perators strive to drill faster and more reliably regardless of the drilling environment. This has increased the demand for more power generation by a mud motor. For shoe-to-shoe drilling performance and improved total well delivery, it is vital for the focus to be on the motor as a system. Historically, the focus on motors has been to improve performance of individual sub-systems or components with little focus on overall system performance. As a result, one of the trends is that the power section has outpaced the rest of the motor in terms of torque capability and horsepower.
With advances in elastomer technology and power section design, the industry has developed high-performance power sections that can run at higher flow rate and higher differential pressure resulting in increased horsepower. The transmission and bearing section has now become the weaker link in the chain along with the motor connections. A true system level design requires consideration of the overall bottomhole assembly (BHA), such as motor only or motor-assisted rotary steerable system (RSS); applications (vertical only, curve and lateral, or lateral only); downhole temperatures; and drilling parameters. A clear understanding of the loads on the BHA in various applications and rig constraints in terms of flow rate, pressure and torque capability is critical to ensuring a successful drilling campaign.
The MCE was formed to think of the motor as a system within the BHA and bring together established competencies in system analysis and design, tribology/bearing technology, elastomer chemistry and drive train design. The MCE includes two new power section stator reline facilities that are equipped with state-of-the-art technology and equipment and use proprietary processes for adhesive application, elastomer injection and curing. The laser technology provides high-resolution inspection to assure quality control that the end product meets design intent and customer needs.
perators strive to drill faster and more reliably regardless of the drilling environment. This has increased the demand for more power generation by a mud motor. For shoe-to-shoe drilling performance and improved total well delivery, it is vital for the focus to be on the motor as a system. Historically, the focus on motors has been to improve performance of individual sub-systems or components with little focus on overall system performance. As a result, one of the trends is that the power section has outpaced the rest of the motor in terms of torque capability and horsepower.
With advances in elastomer technology and power section design, the industry has developed high-performance power sections that can run at higher flow rate and higher differential pressure resulting in increased horsepower. The transmission and bearing section has now become the weaker link in the chain along with the motor connections. A true system level design requires consideration of the overall bottomhole assembly (BHA), such as motor only or motor-assisted rotary steerable system (RSS); applications (vertical only, curve and lateral, or lateral only); downhole temperatures; and drilling parameters. A clear understanding of the loads on the BHA in various applications and rig constraints in terms of flow rate, pressure and torque capability is critical to ensuring a successful drilling campaign.
The MCE was formed to think of the motor as a system within the BHA and bring together established competencies in system analysis and design, tribology/bearing technology, elastomer chemistry and drive train design. The MCE includes two new power section stator reline facilities that are equipped with state-of-the-art technology and equipment and use proprietary processes for adhesive application, elastomer injection and curing. The laser technology provides high-resolution inspection to assure quality control that the end product meets design intent and customer needs.
The NitroForce motor improves ROP by providing the highest horsepower and by enabling a higher weight on bit (WOB). The high flow rate, stronger transmission design and high-strength elastomers work together to increase bit speed and torque output, which increases power. Halliburton’s mud-lubricated polycrystalline diamond compact thrust bearing design withstands higher thrust loads, enabling a higher WOB. The specific power section configuration is designed to maximize reliability and horsepower while ensuring that the transmission, bearings and connections are designed to meet the requirements of the system performance.
The matched system of the motor provides optimized performance and reliability, with a power section and lower end that are designed to work together. Both the power section and lower end have a high flow rate to ensure that hole cleaning is not restricted by tool design. The motor delivers longer runs with less wear by using the Charge high-performance elastomers (HPEs) and the stronger transmission, power section and bearings. Developed in the MCE, the durability of the Charge HPE improves reliability and increases the life of the stator so the motor can drill farther. It has low hysteresis (internal heat generation) while drilling with reliable rubber-to-metal bond and high abrasion resistance. The NitroForce motor transmission design and bearing technology enables the ability to operate at high flow and high torque.
In the U.S. Midcontinent region, the NitroForce motor was able to drill 10,000 ft in one run to achieve a record with 30% more ROP of 105 ft/hr in the basin. In Canada, a matched system BHA with a proprietary NitroForce power section design delivered the lateral in a single run, when historically it used to take three BHAs to deliver the well. Using a systems approach, a matched motor with a bit was designed with the motor configured to deliver increased power and torque. This enabled completion of the lateral in one run as compared to multiple trips that increased the cost of drilling shoe to shoe. The matched system reduced lateral drill time by more than 25%.
In a motor-assisted RSS application in the U.S., the NitroForce motor outperformed the competition to drill the fastest well and set a new ROP record consecutively, which reduced six days of rig time.

By developing a true system level design with the NitroForce motor, Halliburton can provide increased power and performance to complete longer laterals faster and with greater control to help operators drill more consistent wells to increase their production.